The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
Existing neural rendering methods for creating human avatars typically either require dense input signals such as video or multi-view images, or leverage a learned prior from large-scale specific 3D human datasets such that reconstruction can be performed with sparse-view inputs. Most of these methods fail to achieve realistic reconstruction when only a single image is available. To enable the data-efficient creation of realistic animatable 3D humans, we propose ELICIT, a novel method for learning human-specific neural radiance fields from a single image. Inspired by the fact that humans can easily reconstruct the body geometry and infer the full-body clothing from a single image, we leverage two priors in ELICIT: 3D geometry prior and visual semantic prior. Specifically, ELICIT introduces the 3D body shape geometry prior from a skinned vertex-based template model (i.e., SMPL) and implements the visual clothing semantic prior with the CLIP-based pre-trained models. Both priors are used to jointly guide the optimization for creating plausible content in the invisible areas. In order to further improve visual details, we propose a segmentation-based sampling strategy that locally refines different parts of the avatar. Comprehensive evaluations on multiple popular benchmarks, including ZJU-MoCAP, Human3.6M, and DeepFashion, show that ELICIT has outperformed current state-of-the-art avatar creation methods when only a single image is available. Code will be public for reseach purpose at https://elicit3d.github.io .
translated by 谷歌翻译
Noninvasive X-ray imaging of nanoscale three-dimensional objects, e.g. integrated circuits (ICs), generally requires two types of scanning: ptychographic, which is translational and returns estimates of complex electromagnetic field through ICs; and tomographic scanning, which collects complex field projections from multiple angles. Here, we present Attentional Ptycho-Tomography (APT), an approach trained to provide accurate reconstructions of ICs despite incomplete measurements, using a dramatically reduced amount of angular scanning. Training process includes regularizing priors based on typical IC patterns and the physics of X-ray propagation. We demonstrate that APT with 12-time reduced angles achieves fidelity comparable to the gold standard with the original set of angles. With the same set of reduced angles, APT also outperforms baseline reconstruction methods. In our experiments, APT achieves 108-time aggregate reduction in data acquisition and computation without compromising quality. We expect our physics-assisted machine learning framework could also be applied to other branches of nanoscale imaging.
translated by 谷歌翻译
Semantic segmentation is a high level computer vision task that assigns a label for each pixel of an image. It is challengeful to deal with extremely-imbalanced data in which the ratio of target ixels to background pixels is lower than 1:1000. Such severe input imbalance leads to output imbalance for poor model training. This paper considers three issues for extremely-imbalanced data: inspired by the region based loss, an implicit measure for the output imbalance is proposed, and an adaptive algorithm is designed for guiding the output imbalance hyperparameter selection; then it is generalized to distribution based loss for dealing with output imbalance; and finally a compound loss with our adaptive hyperparameter selection alogorithm can keep the consistency of training and inference for harmonizing the output imbalance. With four popular deep architectures on our private dataset with three input imbalance scales and three public datasets, extensive experiments demonstrate the ompetitive/promising performance of the proposed method.
translated by 谷歌翻译
点对特征(PPF)广泛用于6D姿势估计。在本文中,我们提出了一种基于PPF框架的有效的6D姿势估计方法。我们介绍了一个目标良好的下采样策略,该策略更多地集中在边缘区域,以有效地提取复杂的几何形状。提出了一种姿势假设验证方法来通过计算边缘匹配度来解决对称歧义。我们对两个具有挑战性的数据集和一个现实世界中收集的数据集进行评估,这证明了我们方法对姿势估计几何复杂,遮挡,对称对象的优越性。我们通过将其应用于模拟穿刺来进一步验证我们的方法。
translated by 谷歌翻译
配备高速数字化器的前端电子设备正在使用并建议将来的核检测器。最近的文献表明,在处理来自核检测器的数字信号时,深度学习模型,尤其是一维卷积神经网络。模拟和实验证明了该领域神经网络的令人满意的准确性和其他好处。但是,仍需要研究特定的硬件加速在线操作。在这项工作中,我们介绍了Pulsedl-II,这是一种专门设计的,专门为事件功能(时间,能量等)从具有深度学习的脉冲中提取的应用。根据先前的版本,PULSEDL-II将RISC CPU纳入系统结构,以更好地功能灵活性和完整性。 SOC中的神经网络加速器采用三级(算术单元,处理元件,神经网络)层次结构,并促进数字设计的参数优化。此外,我们设计了一种量化方案和相关的实现方法(恢复和位移位),以在所选层类型的选定子集中与深度学习框架(例如Tensorflow)完全兼容。通过当前方案,支持神经网络的量化训练,并通过专用脚本自动将网络模型转换为RISC CPU软件,几乎没有准确性损失。我们在现场可编程门阵列(FPGA)上验证pulsedl-ii。最后,通过由直接数字合成(DDS)信号发生器和带有模数转换器(ADC)的FPGA开发板组成的实验设置进行系统验证。拟议的系统实现了60 PS的时间分辨率和0.40%的能量分辨率,在线神经网络推断在信号与噪声比(SNR)为47.4 dB时。
translated by 谷歌翻译
机器人社区早已期望在混乱环境中处理物体的能力。但是,大多数作品只是专注于操纵,而不是在混乱的对象中呈现隐藏的语义信息。在这项工作中,我们介绍了在混乱的场景中进行体现探索的场景图,以解决此问题。为了在混乱的情况下验证我们的方法,我们采用操纵问题答案(MQA)任务作为我们的测试基准,该测试基准要求具有体现的机器人具有主动探索能力和视觉和语言的语义理解能力。任务,我们提出了一种模仿学习方法,以生成探索的操作。同时,采用了基于动态场景图的VQA模型来理解操纵器手腕摄像头的一系列RGB帧以及操纵的每一步,以在我们的框架中回答问题。我们提出的框架对于MQA任务有效,代表了混乱的场景中的任务。
translated by 谷歌翻译
由于其效率,一声神经架构搜索(NAS)已被广泛用于发现架构。但是,先前的研究表明,由于架构之间的操作参数过度共享(即大共享范围),架构的一声绩效估计可能与他们在独立培训中的表现没有很好的相关性。因此,最近的方法构建了更高参数化的超级链,以降低共享程度。但是这些改进的方法引入了大量额外的参数,因此在培训成本和排名质量之间导致不良的权衡。为了减轻上述问题,我们建议将课程学习应用于共享范围(接近),以有效地训练超级网。具体而言,我们在一开始就以很大的共享范围(简单的课程)训练超网,并逐渐降低了超级网的共享程度(更难的课程)。为了支持这种培训策略,我们设计了一个新颖的超级网(闭合性),该超级网(CLESENET)将参数从操作中解耦,以实现灵活的共享方案和可调节的共享范围。广泛的实验表明,与其他一击的超级网络相比,Close可以在不同的计算预算限制中获得更好的排名质量,并且在与各种搜索策略结合使用时能够发现出色的体系结构。代码可从https://github.com/walkerning/aw_nas获得。
translated by 谷歌翻译
阿尔茨海默氏病(AD)的早期诊断对于促进预防性护理以延迟进一步发展至关重要。本文介绍了建立在痴呆症Pitt copus上的基于最新的构象识别系统以自动检测的开发。通过纳入一组有目的设计的建模功能,包括基于域搜索的自动配置特异性构象异构体超参数除外,还包括基于速度扰动和基于规格的数据增强训练的基线构象体系统可显着改善。使用学习隐藏单位贡献(LHUC)的细粒度老年人的适应性;以及与混合TDNN系统的基于两次通行的跨系统逆转。在48位老年人的评估数据上获得了总体单词错误率(相对34.8%)的总体单词错误率(相对34.8%)。使用最终系统的识别输出来提取文本特征,获得了最佳的基于语音识别的AD检测精度为91.7%。
translated by 谷歌翻译